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Abstract

We firstly define a seminorm on the space of bounded linear operators on a Hilbert
space, which generalizes the numerical radius norm. We investigate basic properties
of this seminorm and prove inequalities involving it. Further, for a positive element a
in a unital C∗-algebra A we define a semi-norm on A, which generalizes the a-operator
semi-norm and the a-numerical radius.
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1 Introduction and preliminaries

Let A be a C∗-algebra with unit denoted by 1 and let a ∈ A be a positive element.
Let B(H) be the C∗-algebra of all bounded linear operators on a complex Hilbert space(
H, 〈·, ·〉

)
. By a state on A we mean a positive linear functional f on A such that ‖f‖ = 1

and let S(A) denote the set of states on A. For an element x ∈ A, let V (x) denote the
(algebraic) numerical range of x ∈ A, that is, the set V (x) =

{
f(x) : f ∈ S(A)

}
. This

set generalizes the classical numerical range in the sense that the numerical range V (T )
of a Hilbert space operator T (considered as an element of a C∗-algebra B(H)) coincides
with the closure of its classical numerical range W (T ) =

{
〈Tξ, ξ〉 : ξ ∈ H, ‖ξ‖ = 1

}
. The

numerical radius of x ∈ A is defined as v(x) = sup
{
|λ| : λ ∈ V (x)

}
.

Recently, Bourhim and Mabrouk in [3] introduced and studied a-numerical range and
a-numerical radius of elements in C∗-algebras. Also, the authors in [1] continued the work
on the a-numerical range and the a-numerical radius. In particular, some ideas from the
recent papers are extended.

Set Sa(A) =
{

f
f(a) : f ∈ S(A), f(a) 6= 0

}
and for an element x ∈ A, let ‖x‖a =

sup
{√

f(x∗ax) : f ∈ Sa(A)
}

. It is worth observing that ‖·‖1 = ‖ · ‖ and ‖x‖a = 0 if

and only if ax = 0. Further the set Sa(A) is a non empty, convex and closed subset
of the topological dual space of A, but it is compact if and only if a is invertible in A;
see [3, proposition 2.3]. In particular if a is not invertible and due to the lack of compact-
ness of Sa(A), it may happen that ‖x‖a = ∞ for some x ∈ A; see [3, Example 3.2]. In
the sequel we will denote Aa = {x ∈ A : ‖x‖a <∞}. The set Aa is a subalgebra of A not
necessarily closed. Also by [3, Proposition 3.3], ‖·‖a is a semi-norm on Aa and satisfies
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‖xy‖a ≤ ‖x‖a‖y‖a for all x, y ∈ Aa. Denote by Aa the set of all elements in A that admit
a-adjoints. Recall that for an element x ∈ A, an element x]a ∈ A is said to be an a-adjoint
of x if ax]a = x∗a. Basic properties of Aa were investigated in [3]. In particular, Aa is a
subalgebra of Aa which is neither closed nor dense in A. Further if x ∈ Aa and x]a is an
a-adjoint of it, then by

‖x‖2a =
∥∥∥xx]a∥∥∥

a
=
∥∥∥x]ax∥∥∥

a
=
∥∥∥x]a∥∥∥2

a
. (1)

An element x ∈ A is said to be a-self-adjoint if ax is self-adjoint, i.e., ax = x∗a. We say that
x is a-positive if ax is positive. Every element x in Aa can be written as x = y+iz where y
and z are a-self-adjoint but, in general, this decomposition is not unique. In fact if x]a is an
a-adjoint of x, then x = R(x)+iI(x), where R(x) = x+x]a

2 and I(x) = x−x]a
2i are a-real and

a-imaginary parts of x, respectively. The a-numerical range (respectively, the a-numerical
radius) of an element x ∈ A are defined by Va(x) = {f(ax) : f ∈ Sa(A)} (respectively,
va(x) = sup {|λ| : λ ∈ Va(x)}). In contrast of the classical algebraic numerical range,
the a-numerical range Va(x) of x ∈ A may be unbounded. Note that these concepts were
introduced in [3] as generalizations of the A-numerical range (respectively, the A-numerical
radius) for Hilbert space operator T given by WA(T ) = {〈ATξ, ξ〉 : ξ ∈ H, ‖ξ‖A = 1}
(respectively, wA(T ) = sup {|λ| : λ ∈WA(T )}), where A is a positive operator on H and
‖ξ‖A =

√
〈Aξ, ξ〉 for all ξ ∈ H. In particular, when A is the identity operator on H,

then A-numerical range and A-numerical radius of T coincide with the classical numerical
range and numerical radius, respectively, i.e., WA(T ) = W (T ) and wA(T ) = w(T ).

An important and useful identity for the a-numerical radius (see [3, Theorem 4.11]) is
as follows:

va(x) = sup
θ∈R

∥∥∥R(eiθx)
∥∥∥
a
.

By [3, Proposition 3.3 and Corollary 4.10], observe that va(·) defines a semi-norm on Aa,
which is equivalent to the a-operator semi-norm ‖·‖a. Namely, for x ∈ Aa, it holds that

1

2
‖x‖a ≤ va(x) ≤ ‖x‖a. (2)

The first inequality becomes equality if ax 6= 0 and ax2 = 0 and the second inequality
becomes equality if x is a-self-adjoint (see, [3, Corollary 4.6]).

2 A generalization of the numerical radius for Hilbert space
operators

The notion of orthogonality in an arbitrary normed linear space may be introduced in var-
ious ways. Among them, the one which is frequently studied in literature is the Birkhoff–
James orthogonality [2, 4]: if x, y are elements of a normed linear space E equipped with
the norm N(·), then x is orthogonal to y in the Birkhoff–James sense, in short x ⊥NB y, if

N(x+ λy) ≥ N(x), ∀λ ∈ C.

Moreover, ‖·‖∗N : E∗ −→ [0,+∞) stands for the dual norm, i.e. ‖·‖∗N is a norm in E∗ =(
E,N(·)

)∗
. For fixed x ∈ E let JN (x) denote the set of its supporting functionals:

JN (x) :=
{
f ∈ E∗ : ‖f‖∗N = 1, f(x) = N(x)

}
.
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The Hahn-Banach theorem implies that JN (x) 6= ∅. Recall that a unit vector point u ∈ E
is called a vertex of the closed unit ball in E if JN (u) is total over E.

Now, let N(·) be an arbitrary norm on B(H). According to the beginning of this
section, for fixed T ∈ B(H) we have

JN (T ) =
{
f ∈ B(H)∗ : ‖f‖∗N = 1, f(T ) = N(T )

}
.

Since Birkhoff-James orthogonality has the property of right existence, we obtain
{
ξ ∈ C :

I ⊥NB (T − ξI)
}
6= ∅. Let I ⊥NB (T − ξI) for some ξ ∈ C \ {0}. Hence N

(
I + 1

ξ (T − ξI)
)
≥

N(I) and so |ξ| ≤ N(T )
N(I) . Thus the set

{
ξ ∈ C : I ⊥NB (T − ξI)

}
is also bounded in C. This

motivates the following definition (see [9]).

Definition 2.1. Let N(·) be a norm on B(H). The function wN : B(H)→ [0,+∞) is
defined as

wN (T ) := sup
{
|ξ| : ξ ∈ C, I ⊥NB (T − ξI)

}
for every T ∈ B(H).

Remark 2.2. Let N(·) be a norm on B(H) and let T ∈ B(H). For every ξ ∈ C, we have

I ⊥NB (T − ξI)⇐⇒ N
(
I + λ(T − ξI)

)
≥ N(I) ∀λ ∈ C

⇐⇒ N
(
I +

1

ξ − λ
(T − ξI)

)
≥ N(I) ∀λ ∈ C \ {ξ}

⇐⇒ N
(
(ξ − λ)I + T − ξI

)
≥ |ξ − λ|N(I) ∀λ ∈ C

⇐⇒ N
(
T − λI

)
≥ |ξ − λ|N(I) ∀λ ∈ C.

Thus

I ⊥NB (T − ξI)⇐⇒ N
(
T − λI

)
≥ |ξ − λ|N(I) ∀λ ∈ C. (3)

Remark 2.3. For any T ∈ B(H), it is well-known (see [7]) that

W (T ) =
⋂
λ∈C

{
ξ : ‖T − λI‖ ≥ |ξ − λ|

}
.

Therefore, by (3), we have

w(T ) = sup
{
|ξ| : ξ ∈ C, I ⊥‖·‖B (T − ξI)

}
.

In view of the previous relation, it is now obvious that wN (·) generalizes the classical
numerical radius w(·).

Proposition 2.4. Let N(·) be a norm on B(H) and let T ∈ B(H). Then the following
properties hold:

(i) wN (I) = 1.

(ii) wN (T ) ≤ N(T )
N(I) .

(iii) If N(·) is self-adjoint, then so is wN (·).

(iv) If N(·) is weakly unitarily invariant, then so is wN (·).
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Theorem 2.5. Let N(·) be a norm on B(H). Then wN (·) is a seminorm on B(H).

Remark 2.6. Let N(·) be an arbitrary norm on B(H). By Theorem 2.5, wN (·) is a
seminorm on B(H). Therefore, for T ∈ B(H), if T = 0, then wN (T ) = 0. The converse is
however not true, in general (see Theorem 2.7).

From now on we assume that the considered norm N : B(H) −→ [0,+∞) satisfies
N(I) = 1. There is no loss in generality in assuming this. In particular, the classical
norms on B(H) satisfy such equality for the identity operator I. Therefore, we think that
such assumption is interesting for investigations.

Now, we are going to prove a condition for checking when wN (·) is a norm on B(H).

Theorem 2.7. Let N(·) be a norm on B(H) with N(I) = 1. The following conditions are
equivalent:

(i) wN (·) is a norm on B(H).

(ii) The operator I is a vertex of the closed unit ball in
(
B(H), N(·)

)
.

The following result says that the spaces
(
B(H), N(·)

)
and

(
B(H), wN (·)

)
are similar

(in some sense) in the point I.

Theorem 2.8. Let N(·) be a norm on B(H) with N(I) = 1. If wN (·) is a norm on B(H),
then

JN (I) = JwN (I). (4)

In this case, the operator I is a vertex of the closed unit ball in
(
B(H), wN (·)

)
.

Now we may consider the function wwN : B(H) −→ [0,+∞). Suppose that wN (·) is
a norm on B(H). It follows from Proposition 2.4(i)-(ii) that wwN (·) ≤ wN (·). Moreover,
Theorem 2.5 yields the subadditivity of wwN (·). It is amazing that these remarks can be
strengthen as follows.

Theorem 2.9. Let N(·) be a norm on B(H) with N(I) = 1. If wN (·) is a norm on B(H),
then wwN (·) is also a norm on B(H). Moreover, wwN (·) = wN (·).

Our next result reads as follows.

Theorem 2.10. Let N(·) is a weakly unitarily invariant norm on B(H) and let T and S
be self-adjoint operator in the norm-unit ball of B(H). Then

wN (TS ± ST ) ≤ sup
U∈U

{
wN (TU ± U∗T ), wN (SU ± U∗S)

}
,

where U is the unitary group of all unitary operators in B(H).

As a consequence of Theorem 2.10, we have the following result.

Corollary 2.11. Let N(·) is a weakly unitarily invariant norm on B(H) and let T be an
operator in the norm-unit ball of B(H). Then

wN (TT ∗ − T ∗T ) ≤ 2 sup
U∈U

{
wN

(
R(T )U ± U∗R(T )

)
, wN

(
I(T )U ± U∗I(T )

)}
,

where U is the unitary group of all unitary operators in B(H).
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3 An extension of the a-numerical radius on C∗-algebras

First, let us define notions weighted a-real and a-imaginary parts of elements in Aa. Let
s and t be two nonnegative reals such that s + t > 0. Define the weighted a-real and
a-imaginary parts of x ∈ Aa by R

(s,t)
(x) = sx + tx]a and I

(s,t)
(x) = s(−ix) + t(−ix)]a ,

respectively. When s = t = 1
2 , we clearly have R

( 12 ,
1
2 )

(x) = R(x) and I
( 12 ,

1
2 )

(x) = I(x).

Also define the function v
(a,(s,t))

(·) : Aa −→ [0,+∞) by

v
(a,(s,t))

(x) = sup
θ∈R

∥∥∥R(s,t)
(eiθx)

∥∥∥
a
. (5)

Remark 3.1. For x ∈ Aa, it is easy to see that v
(a,(s,t))

(x) = sup
θ∈R

∥∥∥I(s,t)
(eiθx)

∥∥∥
a
.

Remark 3.2. Obviously, v
(a,(1,0))

(x) = v
(a,(0,1))

(x) = ‖x‖a, and v
(a,( 12 ,

1
2 ))

(x) = va(x). Hence

v
(a,(s,t))

(·) generalizes the a-operator semi-norm ‖·‖a and the a-numerical radius va(·),
which have been introduced in [3].

Remark 3.3. Let A = B(H) and let 0 ≤ ν ≤ 1. We have

v
(I,(ν,1−ν))(T ) = sup

θ∈R

∥∥∥νeiθT + (1− ν)(eiθT )∗
∥∥∥ := wν (T ).

Thus v
(a,(s,t))

(·) also generalizes the weighted numerical radius wν (·), which has been re-
cently introduced in [6] (see also [8]).

Our first result reads as follows.

Theorem 3.4. Let x ∈ Aa. The following statements hold.

(i) v
(a,(s,t))

(x) = sup
α,β∈R,α2+β2=1

∥∥∥αR
(s,t)

(x) + β I
(s,t)

(x)
∥∥∥
a
.

(ii) v
(a,(s,t))

(x) = 1
2 sup
θ,ϕ∈R

∥∥∥R(s,t)

(
(eiθ − ieiϕ)x

)∥∥∥
a
.

The next result establishes that v
(a,(s,t))

(·) and ‖·‖a are two equivalent semi-norm on
Aa.

Theorem 3.5. v
(a,(s,t))

(·) is a semi-norm on Aa and for every x ∈ Aa the following
inequalities hold:

max{s, t}‖x‖a ≤ v(a,(s,t))(x) ≤ (s+ t)‖x‖a. (6)

Remark 3.6. For x ∈ Aa, by (1), we have

v
(a,(s,t))

(x]a) = sup
θ∈R

∥∥∥seiθx]a + te−iθ(x]a)]a
∥∥∥
a

= sup
θ∈R

∥∥∥∥(se−iθx+ teiθx]a
)]a∥∥∥∥

a

= sup
θ∈R

∥∥∥se−iθx+ teiθx]a
∥∥∥
a

= v
(a,(s,t))

(x),

and hence v
(a,(s,t))

(x]a) = v
(a,(s,t))

(x).

5



Ali Zamani

In the following result, we give a condition equivalent to v
(a,(s,t))

(x) = max{s, t}‖x‖a.

Theorem 3.7. Let x ∈ Aa. The following are equivalent:

(i)
∥∥∥R(s,t)

(eiθx)
∥∥∥
a

= max{s, t}‖x‖a for all θ ∈ R.

(ii) v
(a,(s,t))

(x) = max{s, t}‖x‖a.

In the following theorem, a refinement of the inequality (6) is given.

Theorem 3.8. Let x ∈ Aa. Then

v
(a,(s,t))

(x) ≤
√

(s2 + t2)‖x‖2a + 2st va (x2) ≤ (s+ t)‖x‖a.

Corollary 3.9. If x ∈ Aa is such that v
(a,(s,t))

(x) = (s+ t)‖x‖a, then ‖x2‖a = ‖x‖2a.

Our final result extends and refines an inequality for the numerical radius of Hilbert
space operators obtained by Kittaneh in [5].

Theorem 3.10. Let x ∈ Aa. Then

st
∥∥∥xx]a + x]ax

∥∥∥
a

+
1

2
sup
θ∈R

∣∣∣∣∥∥∥R(s,t)
(eiθx)

∥∥∥2
a
−
∥∥∥I(s,t)

(eiθx)
∥∥∥2
a

∣∣∣∣ ≤ v2(a,(s,t))(x).
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[9] A. Zamani and P. Wójcik, Another generalization of the numerical radius for Hilbert
space operators, Linear Algebra Appl. 609 (2021), 114–128.

6


	Introduction and preliminaries
	A generalization of the numerical radius for Hilbert space operators
	An extension of the a-numerical radius on C*-algebras

