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Abstract

In the late 1960 Ballantine showed that every matrix with positive determinant is
a product of five positive definite matrices.

We consider the complex symplectic group Sp(2n,C):

Sp(2n,C) =
{
A ∈ GL(2n,C) : A⊤JnA = Jn

}
,

where

Jn =

[
0 In

−In 0

]
.

The symplectic group is a classical group defined as the set of linear transformations
of a 2n-dimensional vector space over C, which preserve the non-degenerate skew-
symmetric bilinear form that is defined by Jn. We show that every symplectic matrix
is a product of five positive definite symplectic matrices. We also show that five is the
best in the sense that there are symplectic matrices which are not product of less.
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